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Linear Search with Bounded Resources

R.D. Foley, T.P. Hill, and M.C. Spruill
Georgia Institute of Technology

A point is placed at random on the real line according to some known distribution
F, and a search is made for this point, beginning at some starting points s on the
line, and moving along the line according to some function x(f). The objective of
this article is to maximize the probability of finding the point while traveling at
most d units. Characterizations of simple optimal searches are found for arbitrary
distributions, for continuous distributions with continuous density everywhere (e.g.,
normal, Cauchy, triangular), and for continuous distributions with density which
is continuous on its support (e.g., exponential, uniform). These optimal searches
are also shown to be optimal for ‘maximization of the expected number of points
found if the points are placed on the line independently from a known distribu-
tion F. '

1. INTRODUCTION

A point is placed on the real line R! according to a known probability distri-
bution F, and then a search is made to determine the location of this point, by
starting at some point s on R and moving along the line. What is a good strategy
for searching? Do optimal searches exist?

The work on search problems apparently stems from Bellman [2]; Bruss and
Robertson [3] and Gal [6] have good reviews of the literature. Beck [1] uses the
example of a man in an automobile who is looking for an object along a road;
the automobile travels at a certain fixed speed and his objective (the same
objective as that of Bellman, Gal, and Bruss and Robertson) is to minimize the
expected time until the object is found. )

The objective in this article, on the other hand, is to anglyze a lm.ear se:flrch
problem with respect to maximizing the probability of finding the object, given
that the searcher may travel only fixed finite distance. (In the automobile ex-
ample, the bounded resources may perhaps be interpreted as “thh_a fixed
amount of fuel,” whereas in Beck’s example good searches use arbitrarily large
amounts of fuel.) The essential difference from the Bellman prot'ﬁem, of course,
is the cost function and not just the bounded resources. The main results of this
article include the existence and characterizations of simple optimal searches for

general distributions, for continuous distributions with everywhere continuous

densities (e.g., normal, Cauchy, triangular), for continuous distributions with

densities which are continuous on their supports (e.g., uniform, expnngnnal).
They include also the proof that the optimal searches for a single point are
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optimal for maximization of the expected number of i.i.d. points found by

searches which utilize information on the location of points in the region searched
but do not look ahead.

2. OPTIMAL SIMPLE SEARCHES

There are certainly many different reasonable definitions of linear ie‘:us:ﬁs;of
given length, and the one chosen here seems to be the most g.eneral.' ;;1 u10vesy;
a linear search of length d is any trajectory along the re_al lxr}e which m hes @
total of d units, including jumps and motion in bpth directions. Forrrllaa y;;ch
linear search is just an element of the set of functions BV [0, 1], the Ban

. " . o
space of real-valued functions on [0,1] which have bounded variation, with th
total variation norm

Ixll = sup = {x(r) — x(r.-))l,

where the supremum extends over all partitions of {0, 1], by finite collectlrcz;lls
of points 0 = ¢, <. - - <t = 1. Thus the function x(_-) represents thf:hsef;~ 1hé
x(t) is the position of the searcher at time ¢, and ||x] is the total leng.t1 d0 the
search. The set S(d) of x in BV [0, 1] with |x]| = d, where d >0, will den y
the linear searches with fixed resources d, and the searches with resour.ces

which start at s € R! are those x € S(d) for which x(0) = s. .The mifIXImU{n
distance that a search x in S(d) can travel from its starting point is 4, as is casily
seen from the definition of llxll. If 4 (x) denotes the range of the function X,

and co(A) the closed convex hull of the set A, then the probability that the
object is located by the search x is

Arx) = p(co( A (x))),

where u is the Borel measure on R!
The tacit assumption here is that if
B, then he has visited or «
transition from A4 to B was
between Beck’s problem a
finite length. The interval {
any other closed interval
simply chosen for conve
Next, define

generated by the probability distribution F-
the searcher travels from point A to point
seen” every point in between, whether or not the
instantaneous or continuous. The crucial difference
nd this one is that the searches in this article are ?f
0, 1] in BV[0, 1] can be thought of as ““time”’; clearly

. ‘o S
will serve the same purpose, and the unit interval wa
nience.

Afa = sup{Axx): x € S(d)},
and

Afas = sup{lAdx): x € S(d), x(0) = s}.
Intuitively, Afsrepresents the hj
if the searcher is allowed to start

ghest possible probability of finding the object
d units, while A%, represents the

anywhere on R!, but can travel no more t_haﬂ
optimal probability of finding the object given
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starting position s and d units of travel. Clearly Af, = Af 4, (and in fact A, =
max{A%,,: s € R}; see Theorem 2.2 below).
Let Qf 4 denote the Lévy concentration function for closed intervals of length

d (cf. [T]), i.e., Qra = sup{ufa, a + d:a € R}.
THEOREM 2.1: A;.E,d = QF,d'

PROOF: Since for any x € S(d), co(:#(x)) is an interval of length no more
than d, Ag(x) = Q. ; by definition of Qf 4. Therefore, Afs = Qr ;. On the other
hand, let ¢ > 0 be arbitrary and [a, a + d] satisfy u(fa,a + d) > Qra — &
Since the function x(r) = a + td, t € [0, 1] is in S (d),

Afs= Apx) = p(la, a + d)) > Qra — & 5

The objective is to find optimal searches, that is, searches in the appropriate
class (i.e., with fixed length and either an arbitrary or fixed starting point) which
have the highest probability of finding the hidden object. Formally speaking, an
optimal search is as follows.

DEFINITION: The search x* is (F d)-optimal if x* € S(d) and Afd =
A{x*). The search x* is (F, d, s) optimal if x* € 5(d), x*(0) = s, and Afas =
AAx*).

REMARK: A well-known inequality of Lévy (cf. 7], p- 27) giving a sharp
lower bound for the concentration function in terms of the variance (and vice
versa) may be translated, via Theorem 2.1, into a sharp box}nd for the sez.trch
probabilities Af,1n terms of the variance. Reference [4] contains generalizations
of Lévy’s inequalities which can be used to bound A%, and Afas-

THEOREM 2.2: For every probability distrib_ution F,everyd >0, and every
s € R!, (F, d)- and (F, d, s)-optimal searches exist.

PROOF: The existence of (F, d)-optimal searches follows immediately from
Theorem 2.1 above and Theorem 1.1.8 of Hengartner and Theodorescu [7],

since for any Fand d > 0, Qr. is attained for some interval [a, a + d]. The

existence of (F, d, s)-optimal searches will follow from Theorem 2.6. O

REMARK: A similar existence result, in a more general objective setting,
is Theorem 2.1 of Fristedt and Heath [5].

The following theorem is another consequence of Theorem 2.1 a}ngi ;1 well-
known result of Lévy for concentration functions (cf. [7], Theorem 2.Z. )-

THEOREM 2.3.  The set of real numbers which are starting points for.

(F, d)-optimal searches is closed and nonempty.




2GR R W A

e .

558 Naval Research Logistics, Vol. 38 (1991)

DEFINITION: A search x is simple if there is a y € [0, 1] so that x is linear

on [0, y] and on [y, 1] and has a strict extremum at y. If y € (0, 1) then x(y) is
called a turning point of x.

Informally, a search is simple if it moves in one direction with constant vglocity
until it reaches some point ¢, and then it either stops or moves back in the

opposite direction with constant velocity. The next task will be to show that
optimal simple searches always exist.

LEMMA 24: Fixd > 0ands € R'. Given ¢ > 0 there is a simple search
X € §(d) starting at s such that

AF(X) > A;:,d,s — &.

PROOF: Let y € S(d) be such that y(0) = s and A(y) > Af4, — & Let
la, b] be the closed convex hull of A(y). Then Af(y) — w([a, b]). Let t, €
{0, 1] be such that y(1,) — a and r, € [0, 1] be such that y(r,) — b. Then

d=yl=ls — y)| + jy() — y(r)| + |y(r,) — y(1)l,

or this inequality holds with the rol
letting n — o shows
b — a|. Assuming,
that b = s, define

if 1, = r,,

es of ¢, and r, reversed if ¢, = r,. In any case,
that either [|y|| = |s — b + |b — gl or [yl = Is — a| +
without 10ss of generality, that the former holds and observing
the simple search x, € S(d) starting at s by

Xolf) = {s + 2(b — ),

O=r=1/2,
b + 2(a —- by(r — 1/2),

1/2 =¢t=1.

Then jixdl = |s — | + b — al = d and

AHxo) = u([a, b]) = Ay) > A}y, — & O

DEFINITION: Fora Borel probability measure u and every real s and ¢ let

u(2t — d — s, ], ift>s,
P()=3u(t,d ~ s + 21]), iftr<s,
u(fs, s + d)) V u([s — d, s)), iftr =s.

In other words, P,
search starting at s a
IWOo cases moving le

(2) is just the probability of finding the object with a simple
nd turning back at ¢ (if s = ¢, it represents the better of the
ft d units, or moving right d units).

LEMMA 250 Af., = supl{Py(): 1 & [s — di3,s + ds3]}.

- Ttis easily verified that fo

] T any simple search x, with ||x]] = d, and
with a turning point ¢t = x(yy y p I

[s — d/2,s + di2}, Adx) = P(f). I x is sim}il)e
AKx) is either u(ls, s + d)) or u([s — d, sD-
Lemma 2.4 shows that AFas is the supremum of A(x) over the set of simple
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searches in S(d) starting at s. It is clear that one can restrict the supremum to
those simple searches in S(d) for which ||x]] = d. Therefore, the statement of
Lemma 2.5 with d/2 rather than d/3 will be proven if it can be shown that for
every simple x € S(d) starting at s, whose turning point isin (s — d, s — di2]
U [s + d/2, s + d), there is a simple x* € S(d) starting at s for which
Ax*) = AHx).

Assume first that x has a turning point at ¥ with x(y) E[s + d/2,5 + d).
Then for allz € [y, 1], s = x(9) <s + d, for otherwise ||x|| > d. Therefore, if
x* is the simple search with no turning point which goes from s to s + d then
Ax®) = u(s, s + d]) = u(ls, x(N)) = A(x). The same argument applies to
x(y) € (s — d,s — di2]. To complete the argument, observe that if the turning
point lies in (s + d/3,s + d/2) or (s — d/2,s — dI3), a better strategy is the
simple search with turning point at the other strategy’s terminal point. O

The next result facilitates the identification of optimal searches by vqstly. re-
ducing the class in which optimal searches are known to exist (for applications
see Section 3).

THEOREM 2.6: There is always an (F, d, 5)-optimal Simpk‘e seargh of length
d which either has no turning points, or has exactly one turning point located
not more than d/3 units from the starting point 5.

PROOF: If the function P(¢) can be shown to be upper semicontin.uous
(usc) on [s — d/3,s -+ d/3] then the theorem will follow, for then P,(t) achieves

its maximum on that interval. _
Lett,— t, € (s, s + d/3] and choose @ subsequence 1, for which P,(1,) —

lim sup P,(t,). Then [24, — d —s. ] 2C= lim{[2¢,y — d — 5, t,’] so that
lim sup P,(s,) = lim P(t,) = P(C) = P(t).

The same argument shows that P(r) is usc on [s — d/3.s). Atsonc (lex‘n taic
a further subsequence to get all the intervals of the same type and utilize the
same argument. The maximum in the definition of P(r) at s = ¢ assures the

necessary inequality and completes the proof of the theorem.

” point for a distribution, is a key

i «density-doubling i :
The next idea, that of & Ko eh based on a distribution having a

step in the analysis of many search problems
continuous density, as is seen in the following theorem.

DEFINITION: A turning point fofa simple search x is densily doubling for

the density fif
fty = 2fx(1))-

THEOREM 2.7: If F has an everywhere continuous density, then every
(F, d, s)-optimal single search of length d either has no turning point or has a

turning point which is density doubling.
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PROOF: Since f is continuous, it is an elementary fact that for every r €
(s — d/2, s + di2) — {s} the function P(?) is differentiable. If ¢ > s the'n
Pi(t) = 2f(d — s + 2t) — f(¢). We know by Theorem 2.6 that a maximum is
attained either at r = s orin (s — d/2, s + d/2) — {s} and if the latter set,

there must be a critical point. Setting P! (r) to 0 and observing that the maximum
at t = s entails no turns proves the claim. O

Let S be the support of F and 8§ be its boundary.

THEOREM 2.8: 1If, on the interior of S, F has a continuous .density with
respect to Lebesgue measure, then there is an (F, d, s)-optimal snnple sea{Ch
of length d which has either no turning point, a turning point or terminal point

on 8§, or a density-doubling turning point with both turning point and terminal
point in the interior of S.

PROOF: From Theorem 2.6, it suffices to prove that if there are no optimal
simple searches of length d without a turning point, then there are Opfll?al
simple searches of length d which fall into one or the other of the two remaining
categories.

If an (F, d, 5)-optimal simple search of length d has both its turning point a{ld
terminal point in the complement of 3§, then the turning point #, must be density
doubling. Here the density fis taken to be zero on the complement of S. If bqth
points are in the complement of S then one can clearly move the turning point
until it, or the terminal point, is on a8 without changing the value of Ag(x)-
Finally, searches with one point in the interior of S and the other in the com-

plement of S cannot be optimal for one can clearly increase A(x) by a slight
perturbation of the turning point. |

3. OPTIMAL SEARCH STRATEGIES FOR SEVERAL
CLASSICAL DISTRIBUTIONS

Theorems 2.6-2.8 may be used to greatly facilitate identification of optirflal
§earch strategies for many common distributions, and the purpose of this section
13 to record several such applications, For the standard normal distribution, _bY
using the density-doubling characterization (Theorem 2.7) and somewhat in-
volved but elementary calculations, one can prove the following.

THEOREM 3.1: Ap optimal search for N(O, 1) entering at s < 0 with

Tesources d goes right tos + d if d(d + 2s) = 2 In 2 and otherwise goes left
1o —(2/3)(d — s5) + (1/3)V(d = 5)* ¥ 6In 2 and then right using the remainder
of the resources.

Some special cases se
goes left (or right of co
I s i 1
i » th 1 strategy
is roughly to turn left en as d becomes large the optimal s g

first, using approximately one third of the resources to
§ — d/3, and then head right to end at s + d/3.
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The optimal search for the standard normal is easily translated into an optimal
search for an arbitrary normal. In fact, this holds for all scale-location trans-
formations of an arbitrary F. Let the distribution be F(v) and denote, here only,
an optimal simple search for F with initial resources d and starting point s by
x(0, 1, s, d, t) for 0 = ¢t = 1. Then one can show that for the scale-location
version F[(v — a)/b], an optimal search strategy for a start at s and with initial
resources d is :

s —a d
x(a, b, s, d, t) = a + bx (0, I’T’ 5’ t)

forO0=r=1.
Using Theorem 2.7 one can also prove the following two theorems.

THEOREM 3.2: For the Cauchy distribution whose density is

1
&)= Z@+ =

fs=0andd=d, = —s + V?2s* + 1 then the simple search which h_as no
turns and proceeds to the right to s + d is optimal. If d > do then the simple

search which first goes left to

V2
s—d+——2—-W+(d—s)2,

and then proceeds right is optimal.

THEOREM 3.3: For the triangular distribution on [ —a, a] whose probability

density is
Yy v M) trpi=a
fix) =4 a a

0, otherwise,

= (a — 3s)/2 the search which proceeds

. A _ =
if entry is at s € [—a, 0] then for d ds d > d, then the

to the right with no turns to s + d is optimal. If 3@ + 5 =
simple search of length d which first proceeds left to

2s — 2d + a
t—" 5 *

then right, is optimal. If d > 3a@ + s, then the search which proceeds to —a

then right to a is optimal.

For the uniform and exponential distributions, Theorem 2.8 yields the fol-

lowing resuits.




562 Naval Research Logistics, Vol. 38 (1991)

THEOREM 3.4: If Fis the uniform distribution on [0, 1], and s =< 1/2, then

an optimal strategy is for d = 1 — s go straight right to s + d, and for d >
1—-s,turnat(s — d + 1)/2 and terminate at one.

EXAMPLE 3.5: If F is the exponential distribution with mean 1,5 =0, an
optimal strategy is if (s, d) is in Region A use (d), in B use (e), in C use (¢),
in D use (c), in E use (e), in F use (a), in G use (e), and in H use (b) where

the regions are shown in Figure 1 and strategies (a), (b), (c), (d) and (e) are
the simple searches described by

(a) straight right terminating at s + d,

(b) straight left terminating ats — 4,

(¢) a density doubling turning point in (s — d/2)*, s},
{(d) a turning point at zero and termination point d — s,
{e) a tumning point at (d + 5)/2 and termination point 0.

REMARKS: The solid lines in Figure 1 were derived analytically while the
dotted line was computed numerically.

The followin
for the expone
between the t
point that is

g facts are useful in showing that the above strategy is optimal
ntial distribution. To have a density-doubling point, the distance
urning point and the termination point must be log 2. A turning
farther than d/3 from s is suboptimal. Combining these two ob-

Figure 1.

I orTI—_—_——m—=, o . O A5
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servations yields the result that density doubling points can only be optimal when
log 2 =5 =< (s + log 2) A\ (3/2) log 2.

Between the strategies (b) and (e) it is easy to show that (b) is better than
(e) if d < s, and (e) is better than (b) if d > 5. Among the strategies {a), (c),
and (d), (a) is optimal if 4 < log 2, (c) is optimal iflog2<d< (s + log2) A\
(3/2) log 2, and (d) is optimal if d > s + log 2. [ We can ignore the interval
((3/2) log 2, s + log 2) since the strategy with turning point at s — d/2 dominates
(a), (c), and (d) but is dominated by (b) and (e).]

Thus, we need only compare the best of (b) and (e) with the best of (a), (),
and (d). In most cases this is easily resolved, frequently by poting that turning
points farther than d/3 units from s are suboptimal. For example, in Region B,
we must compare (e) and (d). Since d < 3s, (e) is optimal while in Region A,
d > 35, and (d) is optimal. The only regions that are difficult to compare ana-
lytically are DU Eand FU G. InD U E we numerically compared (e) and ()
and found that (c) is optimal in D and (e) is optimal in E. Similarly, we nu-
merically compared (e) and (a) in F U G.

4. LINEAR SEARCH FOR n POINTS

Suppose that »n points X;, . . . , X, ar¢ placed independently at random on
the real line according to a known probability distribution function. Let N, denote
the number of points encountered by the search x. Consider the problem of
selecting a search x (with fixed starting point and fixed length) that maximizes
E[N,], the expected number of points encountered. If n = 1, this problem is
identical to the problem of the first three sections where we only needed to
consider searches x(f), ¢t € [0, 1]. Forn > 1, we allow the search to be a function
of X;, ..., X,, and let x(¢, Xy, - - - > X,) denote the position of the searcher
at time t. Of course, we nced to ensure that the searcher at time { only uses
information discovered up to time . Searches that satisfy this property as well
as starting at s and traveling at most d units will be called (s, d)-feasible. We

will delay the formal description until after stating the results.

THEOREM 4.1: Let x be an (s, d)-feasible search and let X,, ....X,be
independent random variables with X, having distribution ;. Then

E[Nx} = z A;,r.d.s-
i=1

COROLLARY 4.2: Suppose X, - - - X, are independent, identically dis-
tributed random variables with distribution F. Any search starting at s .of lc;ngth
oint with distribution F

d which maximizes the probability of finding a single p v ) _
is also optimal for maximizing the expected number of points 11 the n-point

problem.

Formally, the trajectories of an (s, d)-feasible search x(t, Xp, - - - > X)) tE€
[0, 1], are sample paths of a separable stochastic process satlsfymg‘

(i) the initial point is s; i.€., (0, Xoo - - - -

3,
(ii) the search travels at most J units; i.€., X (-5 Xrs - -+ o X} € S(d); and
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(iti) the searcher only uses information at time t which has been discovered up to time
t. Hence, if X; is not in J,, the region searched during [0, ¢], then the search during

[0, {] would be unchanged if X, were located at any other point not in J,. That is,
if X; ¢ J,thenforeveryw ¢ J,and u = ¢

x(u, Xla s et ’Xr'—b w, XH—h LI 4 Xn)

= X(u, le L Xi‘l: Xia Xi+]1 LI ) Xn) (1)

Note that with these properties, the searcher even learns the identity of an

encountered point, i.e., whether the point was X, or X, or . . . , which itself
may contain useful information.

PROOF (of Theorem 4.1): The number of points encountered N, can be
written as N, = 31, 1; (X;) where J, is the random interval generated by th}?
search x and I, is the indicator function of the set B. (Since the process 1s
separable, it is straightforward to show that /, (X)) is measurable.) Hence

EN, = > Pr{X; € J}}.

i=1

Suppose we consider a different objective function: maximize Pr{X, € J,} for a
fixed index i over feasible searches. Furthermore, suppose that instead of gath-
ering information about X, oo X Xii, - X, during the search, we
are given X, . . ., Xy, X.uq, - . . , X, and allowed to use this information. In
other words, the third property of a feasible search (1) is only required for the
l*"‘component instead of all components. Of course, we cannot do worse with
thi_s extra information. But now we have the problem of searching for a single
pomnt with distribution F;, where Fy is the conditional distribution of X; given

o> Xit, Xiyy, ..., X,. From Section 2, the maximum probability of
finding X is Afz4s- Combining this with (1) yields

EN*‘ = Zl E[A;ilx’.d,&'] = Z E[A;:,ds] = Z A;‘T.d,sv
i= i=1 i=1

\;'here tge first equality followed from mutual independence of X,

LR

PROOF (of Corollary 4.2): If there is a feasible search x which has

Pr{Xl’ (S Ji} = A;é,d'.r

for i, | =

for I:g::y i, @ I, ..., n, then by Theorem 4.1, x maximizes the expected
i points encountered. In particular, if X, . . . , X, arei.i.d. this is satisfied,
smnce the optimal simple sear.

ch for one point vield t J, and
PiXery = Arfori=1,. .., p o oo @ nonrandom sty
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REMARK: For the situation where the searcher may select the starting
point, the analogs of both Theorem 4.1 and Corollary 4.2 [e.g., E(N,) =
21, Af 4] follow by the same argument.

Without independence, the conclusion of Corollary 4.2 may fail, as is illus-
trated by following example involving the search for two points located according
to two exchangeable random variables.

EXAMPLE 4.7: Let X, be uniformly distributed on the interval [—1,1]and
X, = —X,. One optimal search in $(1), starting at s = 0, for finding a single
point in [ —1, 1] proceeds straight to the right. As a search for the two points
X, and X, it will always uncover precisely one point, sO the expected number
found is 1. However, the search which proceeds to the right and reverses when-
ever it encounters a point, finds precisely one point with probability 2/3
and precisely two points with probability 1/3. The expected number found is
4/3 > 1.
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